First Derivative $\frac{d y}{d x}$ (talks about slope)

Decreasing:

This is where the slope is negative. Imagine someone sliding down a hill.

$$
\text { solve } \frac{d y}{d x}<0
$$

Important: Remember that when we solve an inequality that is a quadratic or higher we must use the sign change test or graph! We cannot just guess the signs!

Terminology	How to find	y graph	$\frac{d y}{d x}$ graph ($1^{\text {st }}$ derivative)	$\frac{d^{2} y}{d x^{2}} \text { graph (2 }{ }^{\text {nd }} \text { derivative) }$
Increasing Slope is positive (going upwards when you look at the curve from left to right). Imagine climbing up a hill.	$\text { Solve } \frac{d y}{d x}>0$ This should make sense since the first derivative gives the slope of a function and we know it is positive when increasing. To solve the inequality, remember to solve as in equality first, plot the values found on a number line and then use the sign change test and look for + region.	graph is going upwards (when looked at from left to right) To help recognize: tangent lines drawn are increasing	graph is always ABOVE x axis graph will be in the turquoise region	We can't tell from this graph
Decreasing Slope is negative (going downwards when you look at the curve from left to right). Imagine sliding down a hill.	$\text { Solve } \frac{d y}{d x}<0$ This should make sense since the first derivative gives the slope of a function and we know it is negative when decreasing. To solve the inequality, remember to solve as in equality first, plot the values found on a number line and then use the sign change test and look for - region.		graph is always BELOW x axis graph will be in the turquoise region	We can't tell from this graph
Stationary Points/ Turning Points/ Max/Min Stationary and turning points are either maximums or minimums. They occur where the graph changes from increasing to decreasing or vice versa. or They occur when the slope is zero (since a horizontal line has zero slope)	$\text { Solve } \frac{d y}{d x}=0$ This should make sense since the first derivative gives the slope of a function and we know the slope is equal to zero when we have a stationary/turning point. To classify whether the stationary/turning points are max or min: Way 1: use sign of $\frac{d^{2} y}{d x^{2}}$ Plug the x value found into $\frac{d^{2} y}{d x^{2}}$. If $\begin{aligned} & \frac{d^{2} y}{d x^{2}}>0 \Rightarrow \min \\ & \frac{d^{2} y}{d x^{2}}<0 \Rightarrow \max \end{aligned}$ Way 2: $\frac{d y}{d x}$ sign change test Plug values either side of the value of x found into $\frac{d y}{d x}$. If $\frac{d y}{d x}$ changes from $\begin{aligned} & - \text { to }+\Rightarrow \min \\ & + \text { to }-\Rightarrow \max \end{aligned}$	Min Max Note: when $\frac{d y}{d x}$ is undefined max/min will look like sharp turns (corners/nodes and cusps) How would we find these points? $\frac{d y}{d x}$ is undefined when the derivative is a fraction and the denominator is equal to zero.	zeros (points on the x axis) In other words Min: negative to positive slope Max: positive to negative slope Note: $\frac{d y}{d x}=0$ doesn't guarantee a \max / min (i.e. we can have neither like on the graph above). There must be a sign change of $\frac{d y}{d x}$ (this means + to - or - to +) in order to have a max or min.	We can't tell from this graph
Concave Up (aka convex) If water was poured on the curve, the curve would hold the water	$\text { Solve } \frac{d^{2} y}{d x^{2}}>0$ This should make sense to use the second derivative now, since the first derivative talks about the slope and the second derivative talks about concavity which is positive here. To solve the inequality, remember to solve as in equality first, plot the values found on a number line and then use the sign change test and look for + region.	graph looks like the following: Another way to help recognize: tangent lines drawn always lie below Note: It should now make sense why $\frac{d^{2} y}{d x^{2}}>0 \Rightarrow \min$	graph is going upwards	graph is always ABOVE x axis graph will be in the turquoise region

(

Common Mistakes:

- $\frac{d y}{d x}=0$ does not mean that we definitely have a min or max!

It could be a point of inflection. Check whether the sign of $\frac{d y}{d x}$ changes either side of the point. if $\frac{d y}{d x}$ doesn't change sign then not a min or max.

- $\frac{d^{2} y}{d x^{2}}=0$ does not mean that we definitely have a point of inflection!

Check whether the sign of $\frac{d^{2} y}{d x^{2}}$ changes either side of the point. If $\frac{d^{2} y}{d x^{2}}$ doesn't change sign then not a point of inflection.

- $\int y d x$ gives us the area under the graph of y. For example,

The graph shows a piecewise linear function for $-1 \leq x \leq 4$ is shown in the figure. If the function H is defined by $H(x)=\int_{-1}^{x} f(x) d x$, for $-1 \leq x \leq 4$. Find $H(4)$.

$\int_{-1}^{4} f(x) d x=$ area of rectangle + area of triangle + area of triangle $=1(2)+\frac{1}{2}(1)(2)+-\frac{1}{2}(3)(2)=2+1-3=0$

- $\quad \int \frac{d y}{d x} d x$ tells us the area under $\frac{d y}{d x^{\prime}}$ but most importantly tells us how we move up or down on the y graph (what the y value jumps up or down by).

So, if we're given the $\frac{d y}{d x}$ graph and want to know what the y graph looks like we can find the areas. Being under the x axis on $\frac{d y}{d x}$ graph gives a negative area hence y would decrease and being the over x axis gives a positive area hence y would increase. Normally we are given a starting point. For example,

Example 1:

The graph of $y=f^{\prime}(x)$, the derivative of a function f, is a line and a quarter circle shown in the diagram. If $f(2)=3$, find $f(6)$

$f(2)=3$
$f(6)=$ starting value + area of quarter circle $=f(2)+\frac{\pi(4)^{2}}{4}=3+\frac{\pi(4)^{2}}{4}$

Example 2:

The function f is differentiable on the closed interval $[-6,5]$ and satisfies $f(-2)=7$. The graph of $f(x)$, the derivative of f , consists of a semicircle and three line segments, as shown below. Find the absolute minimum value of f on the closed interval $[-6,5]$. Justify your answer.

We can see that the value of f would increase from -6 to -2 (since the areas are positive), then decrease from -2 to 2 (since the areas are negative) and then increase again from 2 to 5 (since the areas are positive). The absolute minimum will occur at the endpoint ($x=-6$ or $x=5$) or at a relative min $(x=2)$

We are told $f(-2)=7$

$$
f(-6)=\text { starting value }- \text { area of triangle }=7-\frac{1}{2}(4)(2)=3
$$

(Note: we minus since we are going backwards, so do the opposite to normal)
$f(2)=$ starting value + area of semicircle $=f(-2)-\frac{\pi(2)^{2}}{2}=7-2 \pi$
$f(5)=$ starting value + area of triangle $=f(2)+\frac{1}{2}(3)(2)=7-2 \pi+3$

$$
=10-2 \pi
$$

The smallest value out of $7,3,7-2 \pi$ and $10-2 \pi$ is $7-2 \pi$
\therefore absolute min value $=7-2 \pi$

